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Parking functions [1]

I A parking function of length n is an n-tuple si = (s1, s2, . . . , sn) in [n] = {1, 2, . . . , n}
the increasing rearrangement s′

i of which satisfies the sentence s′
i ≤ i for all i ∈ [n].

I Parking functions can be characterized by the parking rule, which tries to park n cars
on a one-way street with n parking spots based on an n-tuple si ∈ [n]n:
Imagine n cars travel down a one-way street with n parking spots. Each car prefers
a spot, which it attempts to park in. If the spot is empty, it parks there and succeeds;
otherwise, it continues down the road until it finds an empty spot.

I For example, the 5-tuple (4, 2, 2, 1, 1) is a parking function of length 5.
I The increasing rearrangement (1, 1, 2, 2, 4) satisfies the initial definition.

I All 5 cars will park according to the algorithm in the second bullet point.

I But for instance the 5-tuple (4, 5, 2, 4, 1) fails to be a parking function of length 5.
I The increasing rearrangement (1, 2, 4, 4, 5) fails at the third position!

I When the fourth car tries to park, it will find no spot available.

I A clever argument shows that the number of parking functions of length n is (n + 1)n−1.
I This gives, for instance, a bijection with rooted trees on n + 1 vertices, by Cayley’s formula.

I This in turn gives a bijection with rooted forests on n vertices (just remove the roots).

I This also counts monomials in the Hilbert series of diagonal harmonics and arrangement in the Shi
hyperplane regions, among other combinatorial connections (eg. to the Pitman-Stanley polytope).

k-Naples parking functions

I The k-Naples parking functions generalize the parking functions by abstracting on the parking rule.

I As each car parks, if it finds its spot taken, before it checks ahead of itself, it checks first the spot behind it, then
the spot two behind it, and so on up to k spots. (You can imagine this as a sort of generalized parallel parking.)

I Now we can call the parking functions the 0-Naples. For example, (1, 3, 3) fails to be 0-Naples, but it is 1-Naples.

I Christensen et al [2] gave a recursion for the number of k-Naples parking functions of length n:

|PFn+1,k| =
n∑

i=0

(
n

i

)
min{(i + 1) + k, n + 1}|PFi,k|(n − i + 1)n−i−1

I Specializing to k = 0 and using the formula for the number of parking functions, we get the corollary

(n + 1)n−1 = |PFn,0| =
n−1∑
i=0

(
n − 1

i

)
(i + 1)i (n − i)n−i−2

A closed form formula

I Define ϕk : PFn,k → Sn by ϕ(a1, a2, . . . , an) = s1s2 · · · sn, where parking spot i is occupied by the si
th car.

I For example, if α = (4, 2, 2, 4, 1), then in one-line notation ϕ1(α) = 32415 since the cars park like so:

spot 1 spot 2 spot 3 spot 4 spot 5
c3 c2 c4 c1 c5

I Given a permutation σ = s1 · · · sn ∈ Sn, let
I leftk (i; σ) = length of longest subsequence sj · · · si−1 such that st < si, for all j ≤ t < i.
I rightk (i; σ) = length of longest subsequence si · · · sr such that r ≤ i + k and st ≤ si for all i ≤ t ≤ r.

I Define the `k function counting choices for ai

`k (i; σ) =
{
leftk (i; σ) + rightk (i; σ) if leftk (i; σ) = i − 1
max(leftk (i; σ) − k, 0) + rightk (i; σ) if leftk (i; σ) < i − 1.

I For example, n = 5, k = 2, and σ = 51423 ∈ S5. Then
I left2 (1; σ) = left2 (2; σ) = left2 (4; σ) = 0, left2 (3; σ) = left2 (5; σ) = 1.

right2 (1; σ) = right2 (3; σ) = 3, right2 (2; σ) = right2 (4; σ) = right2 (5; σ) = 1.
I Therefore, `2 (1; σ) = 3, `2 (2; σ) = 1, `2 (3; σ) = max(1 − 2, 0) + 3 = 3, `2 (4; σ) = 1,

and `2 (5; σ) = max(1 − 2, 0) + 1 = 1. This means there are 3 ∗ 3 = 9 such parking functions.

I For each σ ∈ Sn, there are |ϕ−1
k (σ)| =

∏n
i=1 `k (i; σ) k-Naples parking functions mapping to it.

Theorem: Counting the number of k-Naples parking functions

For all n ≥ 1 and 0 ≤ k ≤ n − 1, we have the formula

|PFn,k| =
∑
σ∈Sn

( n∏
i=1

`k (i; σ)
)

.

A logarithmic generating function

Theorem

Let cn,i be the number of permutations in Sn with fiber of size i under φ0. Then

Gn(q) =
n!∑

i=1
cn,iq

ln(i) =
n−1∑
i=0

(
n − 1

i

)
qln(i+1)Gi(q)Gn−1−i(q)

Statistical distributions giving q-analogues

I A q-analogue [Q]q of a Q is a formula in q with limq→0[Q]q = Q.

I A statistic f on a set S is a function f : S → Z (Eg. the divisor function.)

I The distribution D(f ; q) of a statistic f on S is the power series
∑

s∈S qf(s).

I Parking functions can be thought of as labelled Dyck paths. See Figure 1.

I The area of a parking function is the number of boxes so area(31341) = 3.
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Labelled Dyck path
for (3, 1, 3, 4, 1).

Theorem

D(area; q) =
∑

f∈PFn,0

qarea(f) =
∑
σ∈Sn

( n∏
i=1

[`k (i; σ)]q
)

where [−]q is the usual q-analog [m]q = 1 + q + · · · + qm−1.

I Further, we found a statistic areak on the k-Naples parking functions generalizing the theorem to k > 0:

areak(f ) =
n∑

i=1
[n − i + rightk(i; σ)(φk(f )) − fi]

which specializes to area(f ) =
∑n

i=1[n − i − fi + 1] when k = 0 (recall the definition of right).
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