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Preliminaries on parking functions

Introduced in Kolheim & Weiss, An occupancy discipline and
applications, SIAM J. Appl. Math. 14 (1966), 1266-1274.



Preliminaries on parking functions

Examples of parking functions:

• Any permutation π ∈ Sn is a parking function sending the
i-th car to the πi -th parking spot.

• The parking preference (1, 1, . . . , 1) is a parking function
sending the i-th car to the i-th parking spot.

Examples of not parking functions:

• The preference (n, n, . . . , n)︸ ︷︷ ︸
n times

fails to be a parking function.

• The preference (2, 3, 2) fails to be a parking function.



Descriptions of parking functions

Definition: Let ai be a parking preference, bi its weakly-increasing
rearrangement. Then ai is a parking function iff bi ≤ i .

Equivalently: We call ai a parking function iff card{ai ≤ j} ≥ j .

Remark: Permutations of parking functions are parking functions.



Number of parking functions

The number of parking functions of length n is (n + 1)n−1. [2]

Pollak’s Proof:

Image from [2]



Number of parking functions

The number (n + 1)n−1 shows up in all different contexts. Parking
functions of length n are equinumerous with:

• Trees on n + 1 labelled vertices [11]

• Rooted forests on n labelled vertices

• Bijection given by Schützenberger 1968

• Monomials in the Hilbert series of diagonal harmonics [4]

• Labelled Dyck paths of length 2n [4]



Preliminaries on Dyck paths

Definition: A Dyck path is a lattice path from (0, 0) to (n, n) of
north and east steps above the line y = x .

Example:



Preliminaries on Dyck paths

Definition: A labelled Dyck path is a Dyck path with north steps
labelled 1 through n with ascending columns.

Example:
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Preliminaries on Dyck paths

Unlabelled: The number of unlabelled Dyck paths of length 2n is
the n-th Catalan number. [10]

Labelled: The number of labelled Dyck paths of length 2n is the
number of parking functions of length n. [4]

Example: Consider the parking function (2, 1, 2).
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Combinatorial statistics

Definition: A statistic on a set S is a function S → N assigning to
each element s of S a natural number n in N.

Example 1: The inversion statistic inv: Sn → N counts the number
of inversions of a permutation. So inv(312) = 2.

Example 2: The major statistic maj: Sn → N sums the positions of
descents of a permutation. So maj(321) = 1 + 2 = 3.



Combinatorial statistics

Definition: The q-analogue of n is the polynomial

[n]q =
1− qn

1− q
= 1 + q + · · ·+ qn−1

which converges to n in the limit q → 1. [3]

Theorem: ∑
σ ∈ Sn

qinv(σ) =
∑

σ ∈ Sn

qmaj(σ) = [n]q!

where [n]q! is the q-factorial [n]q[n − 1]q · · · [1]q. [3]



Statistics on parking functions

Definition: The area statistic counts the full boxes between the
labelled Dyck path and the line y = x .

Definition: The dinv statistic counts ascents in the main diagonal
and the descents from one diagonal to the next.

Example:
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Statistics on parking functions
Theorem: ∑

π ∈ PFn

q dinv(π) =
∑

π ∈ PFn

q area(π)

Example: Consider parking functions of length 2.
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Statistics on parking functions
Theorem: ∑

π ∈ PFn

q dinv(π) =
∑

π ∈ PFn

q area(π)

Example: Consider parking functions of length 2.
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Diagonal harmonics

For any σ ∈ Sn define Rs > · · · > R2 > R1 > 0 to be the
ascending runs and wk(σ) the number of symbols greater than σk
in its run plus the number of symbols less than σk in the next run.

For σ = (456231), 456 > 23 > 1 > 0 and w5(σ) = 1 + 2 = 3.

Consider objects (σ; u1, u2, . . . , un) with σ ∈ Sn and uk < wk(σ).

Notice that ∑
σ∈Sn

tmaj(σ)
n∏

k=1

[wk(σ)]q

is a generating function for such objects. [4]



Diagonal harmonics

Fermionic formula for the Hilbert series of diagonal harmonics:

CHn(q, t) =
∑
π∈PFn

qdinv(π)tarea(π) =
∑
σ∈Sn

tmaj(σ)
n∏

k=1

[wk(σ)]q

=
∑
I∈In

ttstat(I )qqstat(I ) =
∑
π∈PFn

qarea(π)tpmaj(π)

Specializing to CHn(q, 1) gives the theorem from before,

CHn(q, 1) =
∑

π ∈ PFn

q dinv(π) =
∑

π ∈ PFn

q area(π)

[4]

[4]



Generalizations of parking functions

• Naples parking functions allow cars to try to park one spot
back before moving on down the street. [5]

• k-Naples parking functions generalize these by allowing cars
to park k spots back before moving on. [6]

• Parking sequences generalize let the size of cars vary. [7]

• Trailer sequences have a trailer blocking the first spots. [8]



Generalized parking functions are a pain

• The number of parking sequences with car sizes yi is

(y1 + n) · (y1 + y2 + n − 1) · · · (y1 + · · ·+ yn−1 + 2)

which simplifies to (n + 1)n−1 when yi = 1. [7]

• The number |PFn,k | of k-Naples parking functions satisfies

|PFn+1,k | =
n∑

i=0

(
n

i

)
min((i+1)+k , n+1)|PFi ,k |(n−i+1)n−i−1

which has no known closed formula. [6]



Potential research directions

• Generalize or invent new statistics for these generalized
parking functions and enumerate them.

• Conjucture and find bijective proofs of identities involving
these generalizations or inventions.

• Use these statistical methods to answer open problems.

• For instance, consider a decreasing k-Naples parking function.
Which rearrangements are also k-Naples? [6]

• Conjecture: All rearrangements of a parking preference is
Naples if it only crosses y = x at one corner. [6]
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